3.159 \(\int \frac{\sec ^4(c+d x)}{a \cos (c+d x)+i a \sin (c+d x)} \, dx\)

Optimal. Leaf size=60 \[ -\frac{i \sec ^3(c+d x)}{3 a d}+\frac{\tanh ^{-1}(\sin (c+d x))}{2 a d}+\frac{\tan (c+d x) \sec (c+d x)}{2 a d} \]

[Out]

ArcTanh[Sin[c + d*x]]/(2*a*d) - ((I/3)*Sec[c + d*x]^3)/(a*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.117174, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3092, 3090, 3768, 3770, 2606, 30} \[ -\frac{i \sec ^3(c+d x)}{3 a d}+\frac{\tanh ^{-1}(\sin (c+d x))}{2 a d}+\frac{\tan (c+d x) \sec (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a*Cos[c + d*x] + I*a*Sin[c + d*x]),x]

[Out]

ArcTanh[Sin[c + d*x]]/(2*a*d) - ((I/3)*Sec[c + d*x]^3)/(a*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*a*d)

Rule 3092

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Dist[a^n*b^n, Int[Cos[c + d*x]^m/(b*Cos[c + d*x] + a*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, m},
x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0]

Rule 3090

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{a \cos (c+d x)+i a \sin (c+d x)} \, dx &=-\frac{i \int \sec ^4(c+d x) (i a \cos (c+d x)+a \sin (c+d x)) \, dx}{a^2}\\ &=-\frac{i \int \left (i a \sec ^3(c+d x)+a \sec ^3(c+d x) \tan (c+d x)\right ) \, dx}{a^2}\\ &=-\frac{i \int \sec ^3(c+d x) \tan (c+d x) \, dx}{a}+\frac{\int \sec ^3(c+d x) \, dx}{a}\\ &=\frac{\sec (c+d x) \tan (c+d x)}{2 a d}+\frac{\int \sec (c+d x) \, dx}{2 a}-\frac{i \operatorname{Subst}\left (\int x^2 \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{2 a d}-\frac{i \sec ^3(c+d x)}{3 a d}+\frac{\sec (c+d x) \tan (c+d x)}{2 a d}\\ \end{align*}

Mathematica [A]  time = 0.240093, size = 54, normalized size = 0.9 \[ -\frac{i \left ((4+3 i \sin (2 (c+d x))) \sec ^3(c+d x)+12 i \tanh ^{-1}\left (\cos (c) \tan \left (\frac{d x}{2}\right )+\sin (c)\right )\right )}{12 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a*Cos[c + d*x] + I*a*Sin[c + d*x]),x]

[Out]

((-I/12)*((12*I)*ArcTanh[Sin[c] + Cos[c]*Tan[(d*x)/2]] + Sec[c + d*x]^3*(4 + (3*I)*Sin[2*(c + d*x)])))/(a*d)

________________________________________________________________________________________

Maple [B]  time = 0.163, size = 258, normalized size = 4.3 \begin{align*}{\frac{-{\frac{i}{3}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}+{\frac{1}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{{\frac{i}{2}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{1}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{{\frac{i}{2}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{1}{2\,ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{{\frac{i}{3}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-3}}+{\frac{1}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{{\frac{i}{2}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{1}{2\,ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{{\frac{i}{2}}}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{1}{2\,ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a*cos(d*x+c)+I*a*sin(d*x+c)),x)

[Out]

-1/3*I/d/a/(tan(1/2*d*x+1/2*c)+1)^3+1/2/d/a/(tan(1/2*d*x+1/2*c)+1)-1/2*I/d/a/(tan(1/2*d*x+1/2*c)+1)-1/2/d/a/(t
an(1/2*d*x+1/2*c)+1)^2+1/2*I/d/a/(tan(1/2*d*x+1/2*c)+1)^2+1/2/d/a*ln(tan(1/2*d*x+1/2*c)+1)+1/3*I/d/a/(tan(1/2*
d*x+1/2*c)-1)^3+1/2/d/a/(tan(1/2*d*x+1/2*c)-1)^2+1/2*I/d/a/(tan(1/2*d*x+1/2*c)-1)^2+1/2/d/a/(tan(1/2*d*x+1/2*c
)-1)+1/2*I/d/a/(tan(1/2*d*x+1/2*c)-1)-1/2/d/a*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.17412, size = 251, normalized size = 4.18 \begin{align*} \frac{\frac{4 \,{\left (\frac{3 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{6 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{3 i \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + 2\right )}}{6 i \, a - \frac{18 i \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{18 i \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{6 i \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}} + \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a*cos(d*x+c)+I*a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/2*(4*(3*I*sin(d*x + c)/(cos(d*x + c) + 1) + 6*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 3*I*sin(d*x + c)^5/(cos(
d*x + c) + 1)^5 + 2)/(6*I*a - 18*I*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 18*I*a*sin(d*x + c)^4/(cos(d*x + c)
 + 1)^4 - 6*I*a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6) + log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*
x + c)/(cos(d*x + c) + 1) - 1)/a)/d

________________________________________________________________________________________

Fricas [B]  time = 0.481741, size = 505, normalized size = 8.42 \begin{align*} \frac{3 \,{\left (e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} \log \left (e^{\left (i \, d x + i \, c\right )} + i\right ) - 3 \,{\left (e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} \log \left (e^{\left (i \, d x + i \, c\right )} - i\right ) - 6 i \, e^{\left (5 i \, d x + 5 i \, c\right )} - 16 i \, e^{\left (3 i \, d x + 3 i \, c\right )} + 6 i \, e^{\left (i \, d x + i \, c\right )}}{6 \,{\left (a d e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a*cos(d*x+c)+I*a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(3*(e^(6*I*d*x + 6*I*c) + 3*e^(4*I*d*x + 4*I*c) + 3*e^(2*I*d*x + 2*I*c) + 1)*log(e^(I*d*x + I*c) + I) - 3*
(e^(6*I*d*x + 6*I*c) + 3*e^(4*I*d*x + 4*I*c) + 3*e^(2*I*d*x + 2*I*c) + 1)*log(e^(I*d*x + I*c) - I) - 6*I*e^(5*
I*d*x + 5*I*c) - 16*I*e^(3*I*d*x + 3*I*c) + 6*I*e^(I*d*x + I*c))/(a*d*e^(6*I*d*x + 6*I*c) + 3*a*d*e^(4*I*d*x +
 4*I*c) + 3*a*d*e^(2*I*d*x + 2*I*c) + a*d)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a*cos(d*x+c)+I*a*sin(d*x+c)),x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [A]  time = 1.17489, size = 136, normalized size = 2.27 \begin{align*} \frac{\frac{3 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{3 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} + \frac{2 \,{\left (3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 i \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 3 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 i\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3} a}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a*cos(d*x+c)+I*a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(3*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - 3*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a + 2*(3*tan(1/2*d*x + 1/2*
c)^5 + 6*I*tan(1/2*d*x + 1/2*c)^4 - 3*tan(1/2*d*x + 1/2*c) + 2*I)/((tan(1/2*d*x + 1/2*c)^2 - 1)^3*a))/d